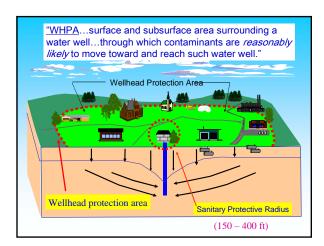
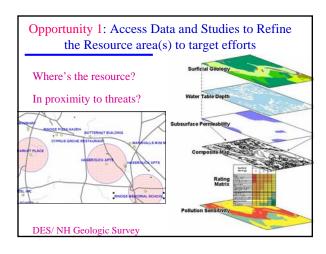
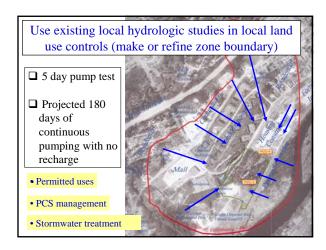
Developing Next to Water Supplies in NH: Approaches and Opportunities for Protection

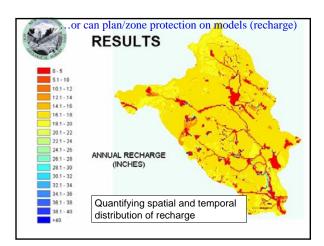
Pierce Rigrod, Principal Planner Source Protection Program Water Supply Engineering Bureau NH DES (603) 271-0688 prigrod@des.state.nh.us

Overview

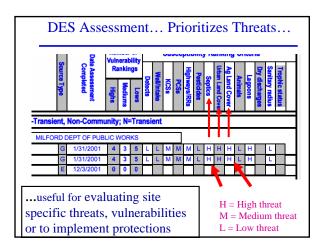

- DES approach to water supply protection.
- Local opportunities for protecting water supply

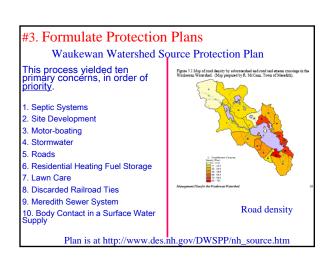

Water Supply Challenges


- Rapid conversion of natural landscapes to new residential, commercial, industrial uses
 - Changes to hydrologic cycle, release of pollutants
- Lack of resources and technical information to formulate protections and address threats
 - How do we find the time, money and information necessary to protect existing and future water supplies?


Several common contaminants being studied... **MTBE** Plumes can extend 1,500 ft; 41% detection rate of MTBE in PWSs in Phasing out in '06 Rockingham County (USGS/DES 2004) Salt NH DOT has spent \$2.8 million since 1993 to replace 397 water supply wells contaminated with NaCl **DES Water Supply Approach** DES has... Towns/Water Suppliers can 1. Defined the resource • Refine the "resource area" areas to protect; 2. Inventoried and • Update threat inventory; Assessed threats: improve assessments of threats 3. Requires setbacks · Require greater or from water supply; different setbacks; • Local oversight, better 4. Enforces BMPs. management of PCSs. DES Protection Approach ☐ Setbacks, land use controls in watersheds (Env-Ws 386) ☐ Define Wellhead Protection Areas (Env 378,379) ☐ Define *Sanitary Radius* (... "natural state" of surrounding area) Monitoring / Inspection ☐ Inspections of PCSs in WHPAs (small community systems) ☐ Chem. monitoring to meet state/federal DW standard ☐ Suggest or enforce BMPs for regulated substances (Env-421) ☐ Administer state Groundwater Reclassification (Env-420)

<u>Proximity & Setbacks</u> : DES Setbacks from Water Supply (in State Rules)		
WATER SUPPLY	LAND ACTIVITY M	in. Setback
Private wells	Septic systems Env-Ws 1000	75 ft
All PWSs	Gasoline USTs (Env-Wm 1401.28)	500 ft new
All PWSs	Buried Stumps/asphalt (Env-Wm 810.09)	75 ft
All PWSs	Biosolids Appl.(Env-Ws 1607.09)	300-500 ft
Private/ Community Well	Pesticide Mixing	75-400 ft.
Community Well Surface water (Env-Ws 378,379) 50 ft.		
PWSs = large & small community wells, surface water supplies.		

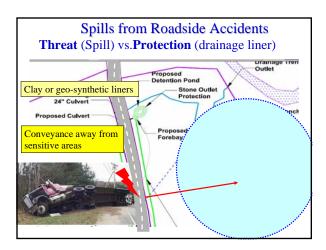



#2 Opportunity Inventory Threats and formulate a Local "Threat" Assessment

How vulnerable are your water supplies and to what?

- Leaks from UST, ASTs or gas station dispensers?
- Stormwater from new development?
- Salt application near wells?
- Runoff from urban land uses?

Numbered state	• Emergency response planning	
highways or active	• Better salt application	
railroads in WHPA or	 Water quality monitoring 	
HAC.	 Land acquisition 	
Contin austoma (on sorror	Water quality monitoring	
Septic systems (or sewer lines) located within WHPA	 Septic pumping program; 	
	• Soil-based lot sizing, require maintenance of septic systems	
Urban land cover in	• Limit future density / impervious surface;	
WHPA or HAC.	Stricter post-construction	


Illicit Discharge	
Review and/or development of a By-Law	↓ A · T 1
Outfalls mapping	Assign Local
Systems mapping	implamantation
Inspection and sampling of systems and outfalls	implementation
Identification of non stormwater discharges	
Maintenance of septic system	⊥ Who?
Staff training	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Education about illegal dumping	Planning Bd.
Construction Site Runoff	
Drafting and enforcement of construction activity By-Law.	Health Officer DPW
Development of soil and erosion control By-Law	ZBA
Daily review of construction activities	Water Dept.
Construction inspection	Contractors
Post Construction Runoff	Con Comm.
Implementation of Stormwater Management Plan	
Review and development of By-Laws	Regional Planning
Development an ordinance to apply performance standards	
Maintenance of structural BMPs.	
BMP inspection and documentation of problems	

Protections should Match Threat

Threat: Salt application near wellfield

- No or low salt in targeted areas.
- Pre-wetting or brine applications to reduce icing
- Alternatives to Salt
 - Calcium magnesium acetate (CMA) is considered the most viable alternative because of its low environmental impact and low corrosion level.

Three Local Review Points

1. Pre-development (pre-application)

• Review in relation to local plans — general scale of development, distance to drinking water resource areas, area soils, slopes, water table, surficial geology, confining layers in hydrology, fractures.

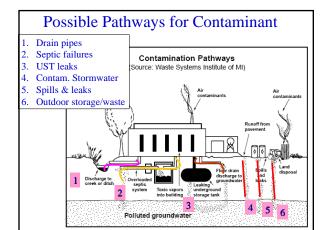
2. Site Plan / Subdivision Review Process (PB,CC)

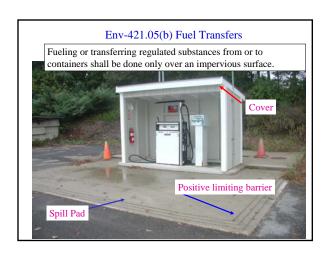
• Review infrastructure, lot size/density, open space, setbacks, built features (envelope, parking, etc.) in relation to resource

3. Post Development/Redevelopment

Ensure long term management; environmentally sensitive redev.

Opportunity 4: Address water supply protection pre-development phase


- Pathways (contaminants to water source)
- List of potential contaminants: (MSDS sheets)
- **Proximity and setbacks**: Resource is upgradient or down-gradient from the land use?

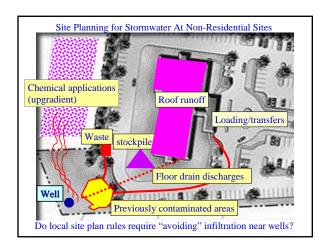

Avoid re-designing the site.

How will the Site Plan address...

- Outdoor storage?
 - Secondary Containment
- Stormwater?
 - Co-mingling with regulated. substances
- Emergency response?
 Spill preparedness
- Transfers/loading?
- Waste management areas?

Env-421.04(b) Storage upon impervious surfaces for regulated substances

Regulated containers... shall be stored in an area having an impervious surface.


Opportunity 5. Improve stormwater management plans

- Minimize stormwater generation
- Reduce or redirect contaminated stormwater
- Address "treat ability" of pollution

Non-residential stormwater Plans:

- Identify areas to avoid infiltration (past spills);
- Show drainage areas for exposed materials, waste areas
- Show potential spill and leak areas (mixing pads)
- Show measures to reduce "run-on" particularly through contaminated surfaces.

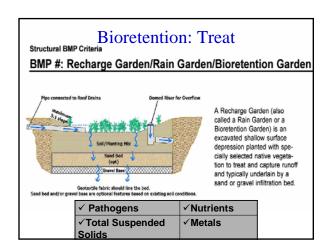
 \ldots Then select the most effective treatment for expected pollutant

Employ Low Impact Development Concepts to Reduce Stormwater Generation

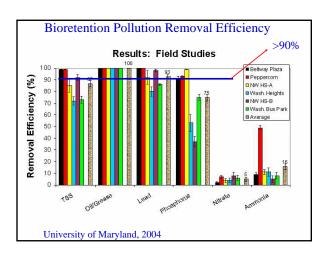
LID seeks to:

- Maximize roughness
- Minimize impervious surfaces
- Minimize Slopes
- Maximize retention
- Filter Runoff

http://www.cwp.org/Community Watersheds/Paxton/bettersitedesign.pdf


Low Impact involves...

- Disconnecting (reduce)
- Directing development away from sensitive resource areas.
- Filtration and treatment through bioretention



See http://www.lowimpactdevelopment.com/

				$\overline{}$	$\overline{}$
System	Total Suspended Solids (TSS)	Total Phosphorus (P)	Total Nitrogen (N)	Zinc	Lead
Bioretention		81	43	99	99
Dry Well	80-100	40-60	40-60	80-100	80-100
Infiltration Trench	80100	40-60	40-60	80-100	80-100
Filter/Buffer Strip	20-100	0-60	0-60	20-200	20-200
Vegetated Swale	30-65	10-25	0-15	20-50	20-50
Infiltration Swale	90	65	50	80-90	80-90
Wet Swale	80	20	40	40-70	40-70
Rain Bar Engine	er practice	s that addi	ess knowr	n pollutant	loading
Cistern	NA.	NA	NA	NA	NA NA

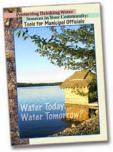
Opportunity #6: Fill Gaps in Protections For example... GAP: protect WHPAs for community well(s) that have been grandfathered (pre-1992); GaP: protect non-community well (not subject to community well siting rules) Require a natural state setback (Hotels, restaurants, campgrounds, etc. (1,100 systems) GAP: Properly review accessory or secondary uses that use regulated substances (small engine repair, hobby farms) or

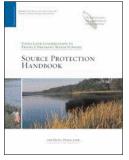
have exemptions. (i.e. agriculture)

Continue "Filling Gaps"...

- ➤ GAP: Up-gradient PCS draining into wells/surface supplies
 - Limit or more closely review discharge/recharge if up gradient
- ➤ GAP: Expansion or redevelopment in historic or urban areas
 - Restrict infiltration toward and through polluted sites, auto salvage yards, known brownfields

Opportunity #7: Enforcement


- Broad authority to enact and enforce innovative land use controls (RSA 674 / 676)
- RSA 485C, Groundwater Protection Act) or for public health (RSA 147).
- Joint Inspection & Enforcement with DES


Summary of Opportunities

- 1. Refine the GW Resource protection area(s);
- 2. Inventory and Assess Threats;
- 3. Develop protective plans -- address "Gaps";
- 4. Address water supply protection in predevelopment phase
- 5. Improve stormwater management;
- 6. Fill Protection Gaps (as per plans)
- 7. Enforcement;

•	
-	

Source Protection Guides

http://www.neiwpcc.org/

http://www.tpl.org/

Site Plan Review (protecting water quality)

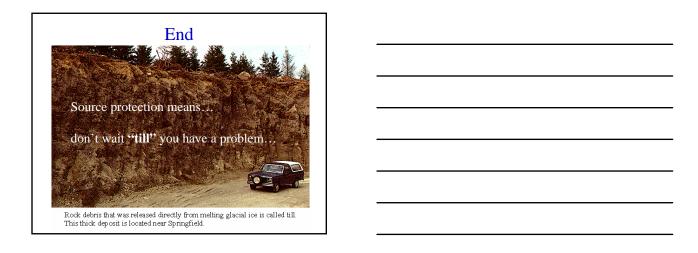
http://www.enviro-source.com/vt/FlyerforWeb.pdf

Related Internet Sites

Low Impact Development

- http://www.epa.gov/owow/nps/lid/
- http://www.lowimpactdevelopment.org

Source Control Plans


- http://www.des.nh.gov/DWSPP/
- http://www.gsrwa.com/programs.htm

Bioretention:

• http://www.ence.umd.edu/~apdavis/Bio-research.htm (Univ. of Maryland)

Salt:

• http://tac-atc.ca/english/pdf/drainage.pdf (Transp. Assoc. of Canada)

